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Abstract

We introduce a Fekete point spectral element method. This is a generalization of
the traditional quadrilateral based spectral element method to any general element
such as triangles. It retains the exponential convergence and the diagonal mass ma-
trix of the original method. We first solve a Sturm-Liouville problem in the square
and the triangle to determine the correct functional space used for approximation.
Once the functional space is known, we use the Fekete criterion to compute near
optimal grids for these spaces which have the same number of points as the dimen-
sion of the functional space. This allows the construction of a well-behaved cardinal
function basis which leads to a diagonal mass matrix.
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1 Introduction

The spectral finite element method [9] is a spectrally accurate algorithm for
solving differential equations on unstructured grids. Typically the computa-
tional domain is broken up into quadrilateral elements. Within each of these
elements all variables are approximated by high degree polynomial expansions.
The discrete equations are then derived using an integral form of the equa-
tions to be solved. When used with conforming elements and a clever choice
of test functions and collocation points, the resulting mass matrix is diagonal
[8], which leads to a computationally efficient method. This property allows
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initial value problems like the shallow water and primitive equations used in
geophysical modeling to be treated fully explicitly.

At present, the diagonal mass matrix spectral element method is only available
with conforming quadrilateral grids. This is because the method relies on
Gauss-like quadrature formula where there are the same number of quadrature
points as the dimension of the functional space. It is generally believed that
such optimal quadrature formulas do not exist in the triangle. In this work
we propose a more general derivation of the diagonal mass matrix spectral
element method based on Fekete points. For quadrilateral elements, this new
derivation is identical to the conventional spectral element method. But it also
allows many other types of elements like triangles, hexagons and tetrahedra.

2 The spectral finite element method

The diagonal mass matrix spectral element method is a standard finite element
method with particular choices of basis functions, test functions, and high
order quadrature for the evaluations of integrals. We now follow [8] and repeat
the standard spectral element discretization, but in a more general way which
will allow us to extend the method to other domains like triangles. We start
with the simple linear advection equation

U = —v - Vu.

We solve this equation for u, in a channel D with inflow boundary conditions
as in [12]. The velocity field v is given, with no flow through the boundary.
We first write the weak or integral form of the equations. We multiply by a
test function v and integrate over the entire domain D

/utwdA:—D/wv-VudA,

D

where dA is the usual area measure. The next step is to decompose the domain
D into elements D;. We will be interested in the case were each Dy, can easily
be mapped to a reference element 2. We will consider the case where € is
either a square or triangle. The integral form of the equation can then be
written

zkj/utw’“ dA = —zkj/(v V) .k dA, (1)



where J* is the Jacobian of the mapping from our reference element € to
Dy. To complete the spatial discretization, we must determine a set of basis
functions to represent our unknown variables within each element, a set of
global test functions for the integral equations and a procedure for computing
the resulting integrals. In a diagonal mass matrix spectral element method,
these functions and quadrature procedure are completely determined by two
choices:

(1) The functional space Py which is spanned by the basis functions within
an element. Let N = dim Py.

(2) Collocation points within each element. There must by exactly N points,
with their convex hull forming the boundary of our element.

The choice of functional space Py will be covered in Section 4, while the choice
of collocation points will be covered in Section 5.

Once the functional space Py and associated collocation points are chosen, the
diagonal mass matrix spectral element discretization proceeds as follows. Since
we use the same number of collocation points as the dimension of Py, we can
construct a cardinal function basis for Py. If Py is a polynomial truncation,
then the cardinal functions will be the Lagrange interpolating polynomials.
With these basis functions, it is possible to construct continuous, piecewise
polynomial (assuming Py is a polynomial space) global test functions defined
over all the elements. At the collocation points, these test functions will be
discrete delta functions. The final step in the derivation of the method is to
evaluate the integrals with inexact, but high order quadrature at our colloca-
tion points. When we allow for this error in the computation of the integrals,
we get a remarkable simplification: a diagonal mass matrix. This simple deriva-
tion is in [8] and for arbitrary space/collocation points in [11]. Finally, we note
that the cardinal function basis is used only in the derivation of the method.
In a numerical method, we would use a well conditioned and easy to compute
basis.

3 Interpolation

Diagonal mass matrix spectral element methods rely heavily on interpolation
and thus the interpolation properties of our discretization are very important.
This is because, as mentioned above, they require the same number of col-
location points as the dimension of the functional space Py being used to
represent functions. Spectral transforms which respect this restriction (such
as the FFT, Chebyshev and Legendre transforms) are equivalent to interpo-
lation at the collocation points by the space spanned by the underlying basis
functions. In this section we derive the classic bound on the max-norm inter-



polation error, which is then used to motivate our choice of Py and collocation
points in the following sections.

Let Pnx be an N dimensional vector space made up of polynomials, and let
) be some domain such as the square or triangle. Take N points, z;, which
are solvable in Py. That is, given an arbitrary function f, there is a unique
function g € Py where g(z;) = f(z;). We will denote the interpolating poly-
nomial g by Ix(f(z)). We define the max norm of functions and operators in
the usual way,

7= max £, ixl = ma ()]

The quantity ||/y|| is usually called the Lebesgue constant.

One can then ask how well does I(f) approximate f? To see this, take a
function h € Py which best approximates f in the max norm. The function
h is not necessarily Iy (f), but h = In(h). Thus,

If = In(H)I=11f = h+ In(h) — In(f)]]
<|If = pll+ ][ Ih = £
<@+ vl I1f = A,

and we see that our max-norm error has two components:

(1) The first component, (1 + ||Ix]|) is controlled by the Lebesgue constant.
Finding points in the triangle with a small Lebesgue constant will be
addressed in Section 5.

(2) The second component, || f—A|| is determined solely by how well our finite
dimensional functional space Py can approximate smooth functions f.
Finding such functional spaces will be done using Sturm-Liouville theory
in Section 4.

We conclude this section with two examples in the well understood domain
of the interval [—1,1]. Take Py to be the span of the first N trigonometric
polynomials, and take our N collocation points to be equally spaced in [—1, 1].
In this example, the interpolating trigonometric polynomial can be computed
very efficiently with the FFT. Also, the Lebesgue constant is known to be
optimally small. However, if our functions of interest f are not periodic, the
max norm ||f — hl| will be O(1) because of Gibbs oscillations and we will
not have convergence as N is increased. For the other extreme, take the same
equally spaced collocation points but let Py be the space of polynomials of
up to degree N — 1. For smooth functions f, || f — k|| converges quite rapidly.
But in this case the Lebesgue constant is known to grow exponentially in IV,



and again our interpolation error will not converge. This is manifested by the
well known Runge phenomena, where the interpolating polynomial has wild
oscillations between the interpolation points.

4 Choosing a functional space

Most classical basis functions used in numerical work are given by eigenfunc-
tions of Sturm-Liouville problems. Thus we are motivated to find basis func-
tions by looking at appropriate Sturm-Liouville problems for the square and
the triangle. The space Py can then be taken as the span of these eigenfunc-
tions. We follow [13] and define a natural basis for a domain €2 as one in which
the convergence of the expansion of an arbitrary function f is dictated only by
the regularity of f. Furthermore the expansion will converge at a rate faster
than any polynomial for f € C*. Such a basis can be constructed by solving
a self adjoint (over C*°) Sturm-Liouville problem in €.

In the square [—1, 1] x [—1, 1], the classical Sturm-Liouville problem is given
by

- l(1 —xQ)a—x] +§—y l(l —yQ)Z—Z] +u = 0.

The eigenfunctions of this equation g, (z,y) are given by a tensor product
of Legendre polynomials, g, (x,y) = Pn(z)P.(y), with eigenvalues A, =
m(m+1)+n(n+1). The g, are orthogonal in the square with respect to the
area measure dA. The tensor product nature of g,,, and A, suggests taking
Py to be the span of the eigenfunctions g, with m(m + 1) < C and n(n +
1) < C, for some constant C'. This leads to the standard diamond polynomial
truncation used in most non-periodic quadrilateral spectral methods. We call
this the diamond truncation because of its shape when pictorially represented
in Pascal’s triangle [13]. It is given by the tensor product of polynomials of
x with polynomials in y of at most degree d. The dimension of this space is
N = (d+1)%

There are three properties of this equation we wish to maintain when con-
structing a Sturm-Liouville problem for other domains. First, the equation
(and the resulting eigenspaces) is invariant under the symmetry group of the
square, D, (permutations of z and y). Secondly, it is self-adjoint since the
coefficients of each directional derivative vanish along boundaries not tangent
to that direction. Finally, we have chosen a uniform weighting so that our
eigenfunctions will be orthogonal with respect to the area measure dA.

For the triangle, we seek the simplest possible equation which has all these



properties. This is most easily constructed in a local coordinate system with
variables a, b and c representing directions tangent to each edge of an equilat-
eral triangle. The equation is

O o a0 0u|l 0 |ng 90ul 0| 5 5 0u _
aa[(% 3a)6a]+8b[(h 3b)8b +Bc (¢t 30)(96 +3\u = 0.

In this coordinate system it is easy to see that the equation is invariant under
D3, the symmetry group of the traingle (permutations of a, b, ¢). Furthermore,
we have chosen quadratic coefficients of each directional derivative which van-
ish along boundaries not tangent to the directional derivative. This guarantees
the equation will be self adjoint.

This equation can be solved after transforming to Cartesian coordinates. Re-
markably, the eigenfunctions g,,, turn out to be the Koornwinder-Dubiner
polynomials, and the eigenvalues are A, = (m + n)(m + n + 2) [13]. The
coupling between m and n for these eigenvalues leads us to suggest Py to
be the span of all g, with A, < C for some constant C'. When viewed in
Pascal’s triangle, this space is a triangular truncation of polynomials, given
by the space of all polynomials in two variables of up to a certain degree d.
The dimension of this space is N = (d + 1)(d + 2)/2. These results generalize
to tetrahedron and higher dimensional simplexes [13].

5 Choosing collocation points

We now must find a set of collocation points in our domain which have a
small Lebesgue constant for Py. Lebesgue points (the points with the smallest
Lebesgue constant) would be an obvious choice, however almost nothing seems
to be known about Lebesgue points in more than one dimension. Nor are we
aware of a feasible method for computing them numerically. Choices such
as equally spaced points (in the square or triangle), or a product Gaussian
grid (restricted to the triangle) lead to disasters. The Lebesgue constants for
these points grow exponentially fast with N. If the points are not chosen very
carefully, the interpolating polynomial will have wild oscillations between the
collocation points, a fundamental problem which can not be overcome by
after-the-fact preconditioning.

For the triangle, there are other tractable alternatives to Lebesgue points. The
ones we prefer are Fekete points. References for Fekete points can be found in
the recent paper [1], which summarizes many of the known results and gives
some open questions. Fekete points are characterized by the points which
maximize the determinant of a generalized Vandermonde matrix. They are
defined for any reasonable domain and space Py. They have been computed



for the triangle in [2,5,11]. If the steepest descent method from [11] is used,
the ill-conditioned Vandermonde determinant need not be calculated.

Other approaches include directly minimizing a variant of the Lebesgue con-
stant [5] and using collocation points based on a minimum energy electro-
static problem [7]. These points have the best Lebesgue constant of any points
known in the triangle for degree d < 10. For degree d > 10, the points with
the smallest yet known Lebesgue constant are computed in [11]. Exponential
convergence of interpolation and differentiation on these grids is shown in [11].

In addition to a small Lebesgue constant in the triangle, there are several other
reasons for the choice of Fekete points. For the interval [—1, 1], with Py poly-
nomials up to degree d, Fejér showed that Fekete points are the Gauss-Lobatto
quadrature points [6]. More recently, Bos has shown that Fekete points in the
square with Py the usual diamond polynomial truncation are a tensor prod-
uct of the Gauss-Lobatto quadrature points [4]. This proof is more difficult
than it seems because one is not allowed to assume the Fekete points have
any structure (such as a tensor product). Thus a Fekete point spectral ele-
ment method is identical to the conventional Gauss-Lobatto quadrature point
spectral element method. Also, theoretical work [3] and numerical evidence
[11] suggests that Fekete points along the boundary of the triangle are the
Gauss-Lobatto points, making Fekete point triangular and quadrilateral ele-
ments naturally conform. Finally, cardinal functions defined at Fekete points
are guaranteed to have a maximum value of 1 over the domain, and thus have
no wild oscillations between the points.

6 Preliminary results and Summary

Preliminary results for Equation 1 using a filtered Adams-Bashforth time step-
ping scheme are presented in Figure 1. This figure shows that for a given
degree the method is not as accurate as the Dubiner method [10,12] on trian-
gles. But the two methods converge exponentially fast at about the same rate.
The tremendous savings gained by not having to invert a mass matrix allows
the Fekete method to achieve errors comparable to those from the Dubiner
method at less computation cost.

In conclusion, we have outlined a Fekete point spectral element method which
can be extended to non-quadrilateral domains such as the triangle. We have
given preliminary results which show exponential convergence. The perfor-
mance of this method for non-linear equations and stability considerations is
a topic of current research.
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Fig. 1. For a Gaussian initial condition from [12] we show the Ly, error from Equa-
tion 1 after one period. The grid has 30 right triangles with polynomial degree d
within each triangle. The fully explicit Fekete method converges at about the same
rate as the Dubiner method.
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